PKC epsilon Blocking Peptide peptide (STJ504730)

SKU:
STJ504730-250

Shipping:
Free Shipping
Current Stock:
Applications: Immunodepletion/Immunocompetition
Note: STRICTLY FOR FURTHER SCIENTIFIC RESEARCH USE ONLY (RUO). MUST NOT TO BE USED IN DIAGNOSTIC OR THERAPEUTIC APPLICATIONS.
Short Description: PKC epsilon Blocking Peptide is synthetically produced from the 350-400 sequence and is suitable for use in western blot applications.
Formulation: Liquid form at 2.5mg/ml concentration in PBS. Up to 5% DMSO can be added. Orders with >1mg can be supplied in lyophilized powder form, or in buffer of choice.
Storage Instruction: Store at-20°C for long term storage. Avoid freeze-thaw cycles.
Gene Symbol: PRKCE
Gene ID: 5581
Uniprot ID: KPCE_HUMAN
Immunogen Region: 350-400
Immunogen: Synthetic peptide taken within amino acid region 350-400 on human Protein Kinase C epsilon type protein.
Tissue Specificity Expressed in cumulus cells (at protein level).
Post Translational Modifications Phosphorylation on Thr-566 by PDPK1 triggers autophosphorylation on Ser-729. Phosphorylation in the hinge domain at Ser-350 by MAPK11 or MAPK14, Ser-346 by GSK3B and Ser-368 by autophosphorylation is required for interaction with YWHAB.
Function Calcium-independent, phospholipid- and diacylglycerol (DAG)-dependent serine/threonine-protein kinase that plays essential roles in the regulation of multiple cellular processes linked to cytoskeletal proteins, such as cell adhesion, motility, migration and cell cycle, functions in neuron growth and ion channel regulation, and is involved in immune response, cancer cell invasion and regulation of apoptosis. Mediates cell adhesion to the extracellular matrix via integrin-dependent signaling, by mediating angiotensin-2-induced activation of integrin beta-1 (ITGB1) in cardiac fibroblasts. Phosphorylates MARCKS, which phosphorylates and activates PTK2/FAK, leading to the spread of cardiomyocytes. Involved in the control of the directional transport of ITGB1 in mesenchymal cells by phosphorylating vimentin (VIM), an intermediate filament (IF) protein. In epithelial cells, associates with and phosphorylates keratin-8 (KRT8), which induces targeting of desmoplakin at desmosomes and regulates cell-cell contact. Phosphorylates IQGAP1, which binds to CDC42, mediating epithelial cell-cell detachment prior to migration. In HeLa cells, contributes to hepatocyte growth factor (HGF)-induced cell migration, and in human corneal epithelial cells, plays a critical role in wound healing after activation by HGF. During cytokinesis, forms a complex with YWHAB, which is crucial for daughter cell separation, and facilitates abscission by a mechanism which may implicate the regulation of RHOA. In cardiac myocytes, regulates myofilament function and excitation coupling at the Z-lines, where it is indirectly associated with F-actin via interaction with COPB1. During endothelin-induced cardiomyocyte hypertrophy, mediates activation of PTK2/FAK, which is critical for cardiomyocyte survival and regulation of sarcomere length. Plays a role in the pathogenesis of dilated cardiomyopathy via persistent phosphorylation of troponin I (TNNI3). Involved in nerve growth factor (NFG)-induced neurite outgrowth and neuron morphological change independently of its kinase activity, by inhibition of RHOA pathway, activation of CDC42 and cytoskeletal rearrangement. May be involved in presynaptic facilitation by mediating phorbol ester-induced synaptic potentiation. Phosphorylates gamma-aminobutyric acid receptor subunit gamma-2 (GABRG2), which reduces the response of GABA receptors to ethanol and benzodiazepines and may mediate acute tolerance to the intoxicating effects of ethanol. Upon PMA treatment, phosphorylates the capsaicin- and heat-activated cation channel TRPV1, which is required for bradykinin-induced sensitization of the heat response in nociceptive neurons. Is able to form a complex with PDLIM5 and N-type calcium channel, and may enhance channel activities and potentiates fast synaptic transmission by phosphorylating the pore-forming alpha subunit CACNA1B (CaV2.2). In prostate cancer cells, interacts with and phosphorylates STAT3, which increases DNA-binding and transcriptional activity of STAT3 and seems to be essential for prostate cancer cell invasion. Downstream of TLR4, plays an important role in the lipopolysaccharide (LPS)-induced immune response by phosphorylating and activating TICAM2/TRAM, which in turn activates the transcription factor IRF3 and subsequent cytokines production. In differentiating erythroid progenitors, is regulated by EPO and controls the protection against the TNFSF10/TRAIL-mediated apoptosis, via BCL2. May be involved in the regulation of the insulin-induced phosphorylation and activation of AKT1. Phosphorylates NLRP5/MATER and may thereby modulate AKT pathway activation in cumulus cells.
Peptide Name Protein Kinase C Epsilon Type
Npkc-Epsilon
Database Links Reactome: R-HSA-114508
Reactome: R-HSA-1250196
Reactome: R-HSA-1489509
Reactome: R-HSA-2029485
Reactome: R-HSA-418597
Cellular Localisation Cytoplasm
Cytoskeleton
Cell Membrane
Perinuclear Region
Nucleus
Translocated To Plasma Membrane In Epithelial Cells Stimulated By Hgf
Associated With The Golgi At The Perinuclear Site In Pre-Passage Fibroblasts
In Passaging Cells
Translocated To The Cell Periphery
Translocated To The Nucleus In Pma-Treated Cells
Alternative Peptide Names Protein Kinase C Epsilon Type protein
Npkc-Epsilon protein
PRKCE protein
PKCE protein

Information sourced from Uniprot.org

12 months for antibodies. 6 months for ELISA Kits. Please see website T&Cs for further guidance