• Western blot analysis of HepG2 cells using Acetyl-Tubulin Alpha (K112) Polyclonal Antibody.. Secondary antibody was diluted at 1:20000

Anti-Acetyl-TUBA1A-Lys112 antibody (STJ90160)

SKU:
STJ90160

Current Stock:
Host: Rabbit
Applications: WB, ELISA
Reactivity: Human, Mouse, Rat
Note: FOR RESEARCH USE ONLY (RUO).
Short Description: Rabbit polyclonal antibody anti-Acetyl-Tubulin alpha-1A chain and Tubulin alpha-1B chain and Tubulin alpha-1C chain-Lys112 is suitable for use in Western Blot and ELISA research applications.
Clonality: Polyclonal
Conjugation: Unconjugated
Isotype: IgG
Formulation: PBS, 50% Glycerol, 0.5% BSA and 0.02% Sodium Azide.
Purification: The antibody was affinity-purified from rabbit anti-serum by affinity-chromatography.
Concentration: 1 mg/mL
Dilution Range: WB 1:500-1:2000
ELISA 1:20000
Storage Instruction: Store at-20°C for up to 1 year from the date of receipt, and avoid repeat freeze-thaw cycles.
Gene Symbol: TUBA1A
TUBA1B
7846
10376
84790
TBA1A_HUMAN
TBA1B_HUMAN
TBA1C_HUMAN
Specificity: Acetyl-TUBA1A-Lys112 polyclonal antibody (Tubulin alpha-1A chain and Tubulin alpha-1B chain and Tubulin alpha-1C chain) binds to endogenous Tubulin alpha-1A chain and Tubulin alpha-1B chain and Tubulin alpha-1C chain.
Immunogen: Synthesized acetyl-peptide derived from human Tubulin Alpha around the acetylation site of K112.
Post Translational Modifications Some glutamate residues at the C-terminus are polyglutamylated, resulting in polyglutamate chains on the gamma-carboxyl group. Polyglutamylation plays a key role in microtubule severing by spastin (SPAST). SPAST preferentially recognizes and acts on microtubules decorated with short polyglutamate tails: severing activity by SPAST increases as the number of glutamates per tubulin rises from one to eight, but decreases beyond this glutamylation threshold. Some glutamate residues at the C-terminus are monoglycylated but not polyglycylated due to the absence of functional TTLL10 in human. Monoglycylation is mainly limited to tubulin incorporated into axonemes (cilia and flagella). Both polyglutamylation and monoglycylation can coexist on the same protein on adjacent residues, and lowering glycylation levels increases polyglutamylation, and reciprocally. The precise function of monoglycylation is still unclear (Probable). Acetylation of alpha chains at Lys-40 is located inside the microtubule lumen. This modification has been correlated with increased microtubule stability, intracellular transport and ciliary assembly. Methylation of alpha chains at Lys-40 is found in mitotic microtubules and is required for normal mitosis and cytokinesis contributing to genomic stability. Nitration of Tyr-451 is irreversible and interferes with normal dynein intracellular distribution. Undergoes a tyrosination/detyrosination cycle, the cyclic removal and re-addition of a C-terminal tyrosine residue by the enzymes tubulin tyrosine carboxypeptidase (VASH1 or VASH2) and tubulin tyrosine ligase (TTL), respectively. Tubulin alpha-1A chain: Tyrosination promotes microtubule interaction with CAP-Gly domain-containing proteins such as CLIP1, CLIP2 and DCTN1. Tyrosination regulates the initiation of dynein-dynactin motility via interaction with DCTN1, which brings the dynein-dynactin complex into contact with microtubules. In neurons, tyrosinated tubulins mediate the initiation of retrograde vesicle transport. Detyrosinated tubulin alpha-1A chain: Detyrosination is involved in metaphase plate congression by guiding chromosomes during mitosis: detyrosination promotes interaction with CENPE, promoting pole-proximal transport of chromosomes toward the equator. Detyrosination increases microtubules-dependent mechanotransduction in dystrophic cardiac and skeletal muscle. In cardiomyocytes, detyrosinated microtubules are required to resist to contractile compression during contraction: detyrosination promotes association with desmin (DES) at force-generating sarcomeres, leading to buckled microtubules and mechanical resistance to contraction.
Function Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain.
Protein Name Tubulin Alpha-1a Chain
Alpha-Tubulin 3
Tubulin B-Alpha-1
Tubulin Alpha-3 Chain Cleaved Into - Detyrosinated Tubulin Alpha-1a Chain
Database Links Reactome: R-HSA-1445148
Reactome: R-HSA-190840
Reactome: R-HSA-190861
Reactome: R-HSA-2132295
Reactome: R-HSA-2467813
Reactome: R-HSA-2500257
Reactome: R-HSA-2565942
Reactome: R-HSA-3371497
Reactome: R-HSA-380259
Reactome: R-HSA-380270
Reactome: R-HSA-380284
Reactome: R-HSA-380320
Reactome: R-HSA-389957
Reactome: R-HSA-389960
Reactome: R-HSA-389977
Reactome: R-HSA-437239
Reactome: R-HSA-5610787
Reactome: R-HSA-5617833
Reactome: R-HSA-5620912
Reactome: R-HSA-5620924
Reactome: R-HSA-5626467
Reactome: R-HSA-5663220
Reactome: R-HSA-6807878
Reactome: R-HSA-6811434
Reactome: R-HSA-6811436
Reactome: R-HSA-68877
Reactome: R-HSA-8852276
Reactome: R-HSA-8854518
Reactome: R-HSA-8955332
Reactome: R-HSA-9609690
Reactome: R-HSA-9609736
Reactome: R-HSA-9619483
Reactome: R-HSA-9646399
Reactome: R-HSA-9648025
Reactome: R-HSA-9668328
Reactome: R-HSA-983189
Cellular Localisation Cytoplasm
Cytoskeleton
Alternative Antibody Names Anti-Tubulin Alpha-1a Chain antibody
Anti-Alpha-Tubulin 3 antibody
Anti-Tubulin B-Alpha-1 antibody
Anti-Tubulin Alpha-3 Chain Cleaved Into - Detyrosinated Tubulin Alpha-1a Chain antibody
Anti-TUBA1A antibody
Anti-TUBA3 antibody

Information sourced from Uniprot.org

12 months for antibodies. 6 months for ELISA Kits. Please see website T&Cs for further guidance