• Western blot analysis of extracts of NIH/3T3 cells, using Phospho-Histone H2AX-S139 antibody (STJ27513) at 1:500 dilution. NIH/3T3 cells were treated by UV at room temperature for 15-30 minutes. Secondary antibody: HRP Goat Anti-rabbit IgG (H+L) at 1:10000 dilution. Lysates/proteins: 25ug per lane. Blocking buffer: 3% non-fat dry milk in TBST. Detection: ECL Basic Kit. Exposure time: 180s.
  • Immunofluorescence analysis of 293T (treated with UV) and 293T (untreated) cells using Phospho-Histone H2AX-S139 Rabbit polyclonal antibody (STJ27513) at a dilution of 1:100 (40x lens). Secondary antibody: Cy3 Goat Anti-Rabbit IgG (H+L) at 1:500 dilution. Blue: DAPI for nuclear staining.
  • Western blot analysis of extracts of C6 cells, using Phospho-Histone H2AX-S139 antibody (STJ27513) at 1:500 dilution. C6 cells were treated by UV at room temperature for 15-30 minutes. Secondary antibody: HRP Goat Anti-rabbit IgG (H+L) at 1:10000 dilution. Lysates/proteins: 25ug per lane. Blocking buffer: 3% non-fat dry milk in TBST. Detection: ECL Enhanced Kit. Exposure time: 180s.
  • Immunohistochemistry analysis of Phospho-Histone H2AX-S139 in paraffin-embedded human tonsil tissue using Phospho-Histone H2AX-S139 Rabbit polyclonal antibody (STJ27513) at a dilution of 1:100 (40x lens). High pressure antigen retrieval was performed with 0. 01 M citrate buffer (pH 6. 0) prior to immunohistochemistry staining.
  • Immunohistochemistry analysis of Phospho-Histone H2AX-S139 in paraffin-embedded mouse heart tissue using Phospho-Histone H2AX-S139 Rabbit polyclonal antibody (STJ27513) at a dilution of 1:100 (40x lens). High pressure antigen retrieval was performed with 0. 01 M citrate buffer (pH 6. 0) prior to immunohistochemistry staining.
  • Immunohistochemistry analysis of Phospho-Histone H2AX-S139 in paraffin-embedded rat lung tissue using Phospho-Histone H2AX-S139 Rabbit polyclonal antibody (STJ27513) at a dilution of 1:100 (40x lens). High pressure antigen retrieval was performed with 0. 01 M citrate buffer (pH 6. 0) prior to immunohistochemistry staining.
  • Immunohistochemistry analysis of Phospho-Histone H2AX-S139 in paraffin-embedded human liver tissue using Phospho-Histone H2AX-S139 Rabbit polyclonal antibody (STJ27513) at a dilution of 1:100 (40x lens). High pressure antigen retrieval was performed with 0. 01 M citrate buffer (pH 6. 0) prior to immunohistochemistry staining.
  • Western blot analysis of lysates from C6 cells using Phospho-Histone H2AX-S139 Rabbit polyclonal antibody (STJ27513) at 1:400 dilution. C6 cells were treated by UV at room temperature for 15-30 minutes. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (STJS000856) at 1:10000 dilution. Lysates/proteins: 25  Mu g per lane. Blocking buffer: 3% nonfat dry milk in TBST. Detection: ECL Basic Kit. Exposure time: 20s.
  • Western blot analysis of lysates from NIH/3T3 cells using Phospho-Histone H2AX-S139 Rabbit polyclonal antibody (STJ27513) at 1:400 dilution. NIH/3T3 cells were treated by UV at room temperature for 15-30 minutes. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (STJS000856) at 1:10000 dilution. Lysates/proteins: 25  Mu g per lane. Blocking buffer: 3% nonfat dry milk in TBST. Detection: ECL Basic Kit. Exposure time: 20s.

Anti-Phospho-Histone H2A-S139 antibody (STJ27513)

SKU:
STJ27513

Shipping:
Free Shipping
Current Stock:
Host: Rabbit
Applications: WB
Reactivity: Human/Mouse/Rat
Note: STRICTLY FOR FURTHER SCIENTIFIC RESEARCH USE ONLY (RUO). MUST NOT TO BE USED IN DIAGNOSTIC OR THERAPEUTIC APPLICATIONS.
Short Description: Rabbit polyclonal antibody anti-Phospho-Histone H2AX-S139 is suitable for use in Western Blot research applications.
Clonality: Polyclonal
Conjugation: Unconjugated
Isotype: IgG
Formulation: PBS with 0.05% Proclin300, 50% Glycerol, pH7.3.
Purification: Affinity purification
Dilution Range: WB 1:100-1:500
Storage Instruction: Store at-20°C for up to 1 year from the date of receipt, and avoid repeat freeze-thaw cycles.
Gene Symbol: H2AX
Gene ID: 3014
Uniprot ID: H2AX_HUMAN
Immunogen: A synthetic phosphorylated peptide around S139 of human Histone H2AX (NP_002096.1).
Immunogen Sequence: PSGGKKATQASQEY
Post Translational Modifications Phosphorylated on Ser-140 (to form gamma-H2AX or H2AX139ph) in response to DNA double strand breaks (DSBs) generated by exogenous genotoxic agents and by stalled replication forks, and may also occur during meiotic recombination events and immunoglobulin class switching in lymphocytes. Phosphorylation can extend up to several thousand nucleosomes from the actual site of the DSB and may mark the surrounding chromatin for recruitment of proteins required for DNA damage signaling and repair. Widespread phosphorylation may also serve to amplify the damage signal or aid repair of persistent lesions. Phosphorylation of Ser-140 (H2AX139ph) in response to ionizing radiation is mediated by both ATM and PRKDC while defects in DNA replication induce Ser-140 phosphorylation (H2AX139ph) subsequent to activation of ATR and PRKDC. Dephosphorylation of Ser-140 by PP2A is required for DNA DSB repair. In meiosis, Ser-140 phosphorylation (H2AX139ph) may occur at synaptonemal complexes during leptotene as an ATM-dependent response to the formation of programmed DSBs by SPO11. Ser-140 phosphorylation (H2AX139ph) may subsequently occurs at unsynapsed regions of both autosomes and the XY bivalent during zygotene, downstream of ATR and BRCA1 activation. Ser-140 phosphorylation (H2AX139ph) may also be required for transcriptional repression of unsynapsed chromatin and meiotic sex chromosome inactivation (MSCI), whereby the X and Y chromosomes condense in pachytene to form the heterochromatic XY-body. During immunoglobulin class switch recombination in lymphocytes, Ser-140 phosphorylation (H2AX139ph) may occur at sites of DNA-recombination subsequent to activation of the activation-induced cytidine deaminase AICDA. Phosphorylation at Tyr-143 (H2AXY142ph) by BAZ1B/WSTF determines the relative recruitment of either DNA repair or pro-apoptotic factors. Phosphorylation at Tyr-143 (H2AXY142ph) favors the recruitment of APBB1/FE65 and pro-apoptosis factors such as MAPK8/JNK1, triggering apoptosis. In contrast, dephosphorylation of Tyr-143 by EYA proteins (EYA1, EYA2, EYA3 or EYA4) favors the recruitment of MDC1-containing DNA repair complexes to the tail of phosphorylated Ser-140 (H2AX139ph). Monoubiquitination of Lys-120 (H2AXK119ub) by RING1 and RNF2/RING2 complex gives a specific tag for epigenetic transcriptional repression. Following DNA double-strand breaks (DSBs), it is ubiquitinated through 'Lys-63' linkage of ubiquitin moieties by the E2 ligase UBE2N and the E3 ligases RNF8 and RNF168, leading to the recruitment of repair proteins to sites of DNA damage. Ubiquitination at Lys-14 and Lys-16 (H2AK13Ub and H2AK15Ub, respectively) in response to DNA damage is initiated by RNF168 that mediates monoubiquitination at these 2 sites, and 'Lys-63'-linked ubiquitin are then conjugated to monoubiquitin.RNF8 is able to extend 'Lys-63'-linked ubiquitin chains in vitro. H2AK119Ub and ionizing radiation-induced 'Lys-63'-linked ubiquitination (H2AK13Ub and H2AK15Ub) are distinct events. Acetylation at Lys-6 (H2AXK5ac) by KAT5 component of the NuA4 histone acetyltransferase complex promotes NBN/NBS1 assembly at the sites of DNA damage. Acetylation at Lys-37 increases in S and G2 phases. This modification has been proposed to play a role in DNA double-strand break repair.
Function Variant histone H2A which replaces conventional H2A in a subset of nucleosomes. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Required for checkpoint-mediated arrest of cell cycle progression in response to low doses of ionizing radiation and for efficient repair of DNA double strand breaks (DSBs) specifically when modified by C-terminal phosphorylation.
Protein Name Histone H2ax
H2a/X
Histone H2a.x
Database Links Reactome: R-HSA-110328
Reactome: R-HSA-110329
Reactome: R-HSA-110330
Reactome: R-HSA-110331
Reactome: R-HSA-1221632
Reactome: R-HSA-171306
Reactome: R-HSA-1912408
Reactome: R-HSA-201722
Reactome: R-HSA-212300
Reactome: R-HSA-2299718
Reactome: R-HSA-2559580
Reactome: R-HSA-2559582
Reactome: R-HSA-2559586
Reactome: R-HSA-3214858
Reactome: R-HSA-427359
Reactome: R-HSA-427389
Reactome: R-HSA-427413
Reactome: R-HSA-5250924
Reactome: R-HSA-5334118
Reactome: R-HSA-5578749
Reactome: R-HSA-5617472
Reactome: R-HSA-5625886
Reactome: R-HSA-5693565
Reactome: R-HSA-5693571
Reactome: R-HSA-5693607
Reactome: R-HSA-606279
Reactome: R-HSA-68616
Reactome: R-HSA-69473
Reactome: R-HSA-73728
Reactome: R-HSA-73772
Reactome: R-HSA-8936459
Reactome: R-HSA-8939236
Reactome: R-HSA-9018519
Reactome: R-HSA-912446
Reactome: R-HSA-9616222
Reactome: R-HSA-9670095
Reactome: R-HSA-9710421
Reactome: R-HSA-977225
Cellular Localisation Nucleus
Chromosome
Alternative Antibody Names Anti-Histone H2ax antibody
Anti-H2a/X antibody
Anti-Histone H2a.x antibody
Anti-H2AX antibody
Anti-H2AFX antibody

Information sourced from Uniprot.org

12 months for antibodies. 6 months for ELISA Kits. Please see website T&Cs for further guidance