Host: |
Rabbit |
Applications: |
WB |
Reactivity: |
Human/Mouse |
Note: |
STRICTLY FOR FURTHER SCIENTIFIC RESEARCH USE ONLY (RUO). MUST NOT TO BE USED IN DIAGNOSTIC OR THERAPEUTIC APPLICATIONS. |
Short Description: |
Rabbit polyclonal antibody anti-NF-Kappa B2 (400-500) is suitable for use in Western Blot research applications. |
Clonality: |
Polyclonal |
Conjugation: |
Unconjugated |
Isotype: |
IgG |
Formulation: |
PBS with 0.01% Thimerosal, 50% Glycerol, pH7.3. |
Purification: |
Affinity purification |
Dilution Range: |
WB 1:500-1:2000 |
Storage Instruction: |
Store at-20°C for up to 1 year from the date of receipt, and avoid repeat freeze-thaw cycles. |
Gene Symbol: |
NFKB2 |
Gene ID: |
4791 |
Uniprot ID: |
NFKB2_HUMAN |
Immunogen Region: |
400-500 |
Immunogen: |
A synthetic peptide corresponding to a sequence within amino acids 400-500 of human NF-Kappa B2 (NP_001070962.1). |
Immunogen Sequence: |
GGGGGAQMAATVPSRDSGEE AAEPSAPSRTPQCEPQAPEM LQRAREYNARLFGLAQRSAR ALLDYGVTADARALLAGQRH LLTAQDENGDTPLHLAIIHG Q |
Post Translational Modifications | While translation occurs, the particular unfolded structure after the GRR repeat promotes the generation of p52 making it an acceptable substrate for the proteasome. This process is known as cotranslational processing. The processed form is active and the unprocessed form acts as an inhibitor (I kappa B-like), being able to form cytosolic complexes with NF-kappa B, trapping it in the cytoplasm. Complete folding of the region downstream of the GRR repeat precludes processing. Subsequent to MAP3K14-dependent serine phosphorylation, p100 polyubiquitination occurs then triggering its proteasome-dependent processing. Constitutive processing is tightly suppressed by its C-terminal processing inhibitory domain, named PID, which contains the death domain. |
Function | NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Different dimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family. In a conventional activation pathway, I-kappa-B is phosphorylated by I-kappa-B kinases (IKKs) in response to different activators, subsequently degraded thus liberating the active NF-kappa-B complex which translocates to the nucleus. In a non-canonical activation pathway, the MAP3K14-activated CHUK/IKKA homodimer phosphorylates NFKB2/p100 associated with RelB, inducing its proteolytic processing to NFKB2/p52 and the formation of NF-kappa-B RelB-p52 complexes. The NF-kappa-B heterodimeric RelB-p52 complex is a transcriptional activator. The NF-kappa-B p52-p52 homodimer is a transcriptional repressor. NFKB2 appears to have dual functions such as cytoplasmic retention of attached NF-kappa-B proteins by p100 and generation of p52 by a cotranslational processing. The proteasome-mediated process ensures the production of both p52 and p100 and preserves their independent function. p52 binds to the kappa-B consensus sequence 5'-GGRNNYYCC-3', located in the enhancer region of genes involved in immune response and acute phase reactions. p52 and p100 are respectively the minor and major form.the processing of p100 being relatively poor. Isoform p49 is a subunit of the NF-kappa-B protein complex, which stimulates the HIV enhancer in synergy with p65. In concert with RELB, regulates the circadian clock by repressing the transcriptional activator activity of the CLOCK-BMAL1 heterodimer. |
Protein Name | Nuclear Factor Nf-Kappa-B P100 SubunitDna-Binding Factor Kbf2H2tf1Lymphocyte Translocation Chromosome 10 ProteinNuclear Factor Of Kappa Light Polypeptide Gene Enhancer In B-Cells 2Oncogene Lyt-10Lyt10 Cleaved Into - Nuclear Factor Nf-Kappa-B P52 Subunit |
Database Links | Reactome: R-HSA-1810476Reactome: R-HSA-3134963Reactome: R-HSA-3214841Reactome: R-HSA-445989Reactome: R-HSA-448706Reactome: R-HSA-4755510Reactome: R-HSA-5603029Reactome: R-HSA-5607761Reactome: R-HSA-5676590Reactome: R-HSA-844456Reactome: R-HSA-933542Reactome: R-HSA-9660826 |
Cellular Localisation | NucleusCytoplasmNuclearBut Also Found In The Cytoplasm In An Inactive Form Complexed To An Inhibitor (I-Kappa-B) |
Alternative Antibody Names | Anti-Nuclear Factor Nf-Kappa-B P100 Subunit antibodyAnti-Dna-Binding Factor Kbf2 antibodyAnti-H2tf1 antibodyAnti-Lymphocyte Translocation Chromosome 10 Protein antibodyAnti-Nuclear Factor Of Kappa Light Polypeptide Gene Enhancer In B-Cells 2 antibodyAnti-Oncogene Lyt-10 antibodyAnti-Lyt10 Cleaved Into - Nuclear Factor Nf-Kappa-B P52 Subunit antibodyAnti-NFKB2 antibodyAnti-LYT10 antibody |
Information sourced from Uniprot.org
12 months for antibodies. 6 months for ELISA Kits. Please see website T&Cs for further guidance