• Rat FOXO1 (Forkhead Box Protein O1) Sandwich ELISA Kit (STJE0008968)

Rat FOXO1 (Forkhead Box Protein O1) Sandwich ELISA Kit (STJE0008968)

SKU:
STJE0008968

Shipping:
Free Shipping
Current Stock:
Applications: ELISA
Reactivity: Rat
Note: STRICTLY FOR FURTHER SCIENTIFIC RESEARCH USE ONLY (RUO). MUST NOT TO BE USED IN DIAGNOSTIC OR THERAPEUTIC APPLICATIONS.
Sensitivity: 0.136ng/mL
Detection Limit: 0.312-20ng/mL
Short Description: This FOXO1 Sandwich ELISA Kit is an in-vitro enzyme-linked immunosorbent assay for the measurement of samples in rat cell culture supernatant, serum and plasma (EDTA, citrate, heparin).
Storage Instruction: Store the unopened kit in the fridge at 2-8°C for up to 6 months. Once opened store individual kit contents according to components table provided with the kit.
Assay Time: 4.5 hrs
Gene Symbol: Foxo1
Gene ID: 84482
Uniprot ID: FOXO1_RAT
Sample Type: tissue homogenates, cell lysates or other biological fluids.
Tissue Specificity
Post Translational Modifications Phosphorylation by NLK promotes nuclear export and inhibits the transcriptional activity. In response to growth factors, phosphorylation on Thr-24, Ser-250 and Ser-313 by PKB/AKT1 promotes nuclear export and inactivation of transactivational activity. Phosphorylation on Thr-24 is required for binding 14-3-3 proteins. Phosphorylation of Ser-250 decreases DNA-binding activity and promotes the phosphorylation of Thr-24 and Ser-313, permitting phosphorylation of Ser-316 and Ser-319, probably by CDK1, leading to nuclear exclusion and loss of function. Stress signals, such as response to oxygen or nitric oxide, attenuate the PKB/AKT1-mediated phosphorylation leading to nuclear retention. Phosphorylation of Ser-323 is independent of IGF1 and leads to reduced function. Dephosphorylated on Thr-24 and Ser-250 by PP2A in beta-cells under oxidative stress leading to nuclear retention. Phosphorylation of Ser-243 by CDK1 disrupts binding of 14-3-3 proteins leading to nuclear accumulation and has no effect on DNA binding nor transcriptional activity. Phosphorylation by STK4/MST1 on Ser-206, upon oxidative stress, inhibits binding to 14-3-3 proteins and nuclear export. PPIA/CYPA promotes its dephosphorylation on Ser-250. Ubiquitinated by SKP2. Ubiquitination leads to proteasomal degradation. Methylation inhibits AKT1-mediated phosphorylation at Ser-250 and is increased by oxidative stress. Acetylation at Lys-256 and Lys-268 are necessary for autophagic cell death induction. Deacetylated by SIRT2 in response to oxidative stress or serum deprivation, thereby negatively regulating FOXO1-mediated autophagic cell death. Once in the nucleus, acetylated by CREBBP/EP300. Acetylation diminishes the interaction with target DNA and attenuates the transcriptional activity. It increases the phosphorylation at Ser-250. Deacetylation by SIRT1 results in reactivation of the transcriptional activity. Oxidative stress by hydrogen peroxide treatment appears to promote deacetylation and uncoupling of insulin-induced phosphorylation. By contrast, resveratrol acts independently of acetylation. Acetylated. Acetylation at Lys-256 and Lys-268 are necessary for autophagic cell death induction. Deacetylated by SIRT2 in response to oxidative stress or serum deprivation, thereby negatively regulating FOXO1-mediated autophagic cell death. Once in the nucleus, acetylated by CREBBP/EP300. Acetylation diminishes the interaction with target DNA and attenuates the transcriptional activity. It increases the phosphorylation at Ser-250. Deacetylation by SIRT1 results in reactivation of the transcriptional activity. Oxidative stress by hydrogen peroxide treatment appears to promote deacetylation and uncoupling of insulin-induced phosphorylation. By contrast, resveratrol acts independently of acetylation. Acetylated at Lys-417, promoting its localization to the nucleus and transcription factor activity. Deacetylation at Lys-417 by SIRT6, promotes its translocation into the cytoplasm, preventing its transcription factor activity. Deacetylation and subsequent inhibition by SIRT6 has different effects depending on cell types: it inhibits gluconeogenesis in hepatocytes, promotes glucose sensing in pancreatic beta-cells and regulates lipid catabolism in brown adipocytes.
Function Transcription factor that is the main target of insulin signaling and regulates metabolic homeostasis in response to oxidative stress. Binds to the insulin response element (IRE) with consensus sequence 5'-TTG/ATTTTG-3' and the related Daf-16 family binding element (DBE) with consensus sequence 5'-TTG/ATTTAC-3'. Activity suppressed by insulin. Main regulator of redox balance and osteoblast numbers and controls bone mass. Orchestrates the endocrine function of the skeleton in regulating glucose metabolism. Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation. Acts synergistically with ATF4 to suppress osteocalcin/BGLAP activity, increasing glucose levels and triggering glucose intolerance and insulin insensitivity. Also suppresses the transcriptional activity of RUNX2, an upstream activator of osteocalcin/BGLAP. Acts as an inhibitor of glucose sensing in pancreatic beta cells by acting as a transcription repressor and suppressing expression of PDX1. In hepatocytes, promotes gluconeogenesis by acting together with PPARGC1A and CEBPA to activate the expression of genes such as IGFBP1, G6PC1 and PCK1. Also promotes gluconeogenesis by directly promoting expression of PPARGC1A and G6PC1. Important regulator of cell death acting downstream of CDK1, PKB/AKT1 and STK4/MST1. Promotes neural cell death. Mediates insulin action on adipose tissue. Regulates the expression of adipogenic genes such as PPARG during preadipocyte differentiation and, adipocyte size and adipose tissue-specific gene expression in response to excessive calorie intake. Regulates the transcriptional activity of GADD45A and repair of nitric oxide-damaged DNA in beta-cells. Required for the autophagic cell death induction in response to starvation or oxidative stress in a transcription-independent manner. Mediates the function of MLIP in cardiomyocytes hypertrophy and cardiac remodeling. Regulates endothelial cell (EC) viability and apoptosis in a PPIA/CYPA-dependent manner via transcription of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis.
Protein Name Forkhead Box Protein O1
Forkhead Box Protein O1a
Forkhead In Rhabdomyosarcoma
Database Links Reactome: R-RNO-198693
Reactome: -RNO-211163
Reactome: -RNO-5687128
Reactome: -RNO-9614399
Reactome: -RNO-9617629
Reactome: -RNO-9617828
Cellular Localisation Cytoplasm
Nucleus
Shuttles Between The Cytoplasm And Nucleus
Largely Nuclear In Unstimulated Cells
In Osteoblasts
Colocalizes With Atf4 And Runx2 In The Nucleus
Serum Deprivation Increases Localization To The Nucleus
Leading To Activate Expression Of Sox9 And Subsequent Chondrogenesis
Insulin-Induced Phosphorylation At Ser-253 By Pkb/Akt1 Leads
Via Stimulation Of Thr-24 Phosphorylation
To Binding Of 14-3-3 Proteins And Nuclear Export To The Cytoplasm Where It Is Degraded By The Ubiquitin-Proteasomal Pathway
Phosphorylation At Ser-249 By Cdk1 Disrupts Binding Of 14-3-3 Proteins And Promotes Nuclear Accumulation
Phosphorylation By Nlk Results In Nuclear Export
Translocates To The Nucleus Upon Oxidative Stress-Induced Phosphorylation At Ser-212 By Stk4/Mst1
Sgk1-Mediated Phosphorylation Also Results In Nuclear Translocation
Retained In The Nucleus Under Stress Stimuli Including Oxidative Stress
Nutrient Deprivation Or Nitric Oxide
Methylated Form Is Nuclear
Ppia/Cypa Stimulates Its Nuclear Accumulation
Deacetylation By Sirt6
Promotes Its Translocation Into The Cytoplasm
Alternative ELISA Names Forkhead Box Protein O1 ELISA kit
Forkhead Box Protein O1a ELISA kit
Forkhead In Rhabdomyosarcoma ELISA kit
Foxo1 ELISA kit
Foxo1a ELISA kit
output

Information sourced from Uniprot.org

12 months for antibodies. 6 months for ELISA Kits. Please see website T&Cs for further guidance