• Mouse FOXO1 (Forkhead Box Protein O1) CLIA Kit (STJC0001331)

Mouse FOXO1 (Forkhead Box Protein O1) CLIA Kit (STJC0001331)

SKU:
STJC0001331

Shipping:
Free Shipping
Current Stock:
Applications: CLIA
Reactivity: Mouse
Note: FOR SCIENTIFIC EDUCATIONAL RESEARCH USE ONLY (RUO). MUST NOT BE USED IN DIAGNOSTIC OR OTHER MEDICAL APPLICATIONS.
Sensitivity: 18.75pg/mL
Detection Limit: 31.25~2000pg/mL
Short Description: This mouse FOXO1 kit is a highly sensitive in-vitro chemiluminescent immunoassay for the measurement of trace amounts of analytes.
Storage Instruction: If unopened the kit may be stored at 2-8°C for up to 1 month. If the kit will not be used within 1 month, store the components separately, according to the component table in the manual.
Assay Time: 3.5h
Detection: Chemiluminescence
Gene Symbol: Foxo1
Gene ID: 56458
Uniprot ID: FOXO1_MOUSE
Specificity: This kit recognizes Mouse FOXO1 in samples. No significant cross-reactivity or interference between Mouse FOXO1 and analogues was observed.
Sample Type: Serum, plasma and other biological fluids
Tissue Specificity Expressed in liver, white and brown adipose tissues (at protein level).
Post Translational Modifications Phosphorylation by NLK promotes nuclear export and inhibits the transcriptional activity. In response to growth factors, phosphorylation on Thr-24, Ser-253 and Ser-319 by PKB/AKT1 promotes nuclear export and inactivation of transactivational activity. Phosphorylation on Thr-24 is required for binding 14-3-3 proteins. Phosphorylation of Ser-253 decreases DNA-binding activity and promotes the phosphorylation of Thr-24 and Ser-316, permitting phosphorylation of Ser-319 and Ser-322, probably by CDK1, leading to nuclear exclusion and loss of function. Stress signals, such as response to oxygen or nitric oxide, attenuate the PKB/AKT1-mediated phosphorylation leading to nuclear retention. Phosphorylation of Ser-326 is independent of IGF1 and leads to reduced function. Dephosphorylated on Thr-24 and Ser-253 by PP2A in beta-cells under oxidative stress leading to nuclear retention. Phosphorylation of Ser-246 by CDK1 disrupts binding of 14-3-3 proteins leading to nuclear accumulation and has no effect on DNA-binding nor transcriptional activity. Phosphorylation by STK4/MST1 on Ser-209, upon oxidative stress, inhibits binding to 14-3-3 proteins and nuclear export. PPIA/CYPA promotes its dephosphorylation on Ser-253. Ubiquitinated, leading to proteasomal degradation. Ubiquitinated by SKP2. Methylation inhibits PKB/AKT1-mediated phosphorylation at Ser-253, promoting nuclear retention and increasing the transcriptional activity and cell death. Methylation increased by oxidative stress. Acetylation at Lys-259 and Lys-271 are necessary for autophagic cell death induction. Deacetylated by SIRT2 in response to oxidative stress or serum deprivation, thereby negatively regulating FOXO1-mediated autophagic cell death. Once in the nucleus, acetylated by CREBBP/EP300. Acetylation diminishes the interaction with target DNA and attenuates the transcriptional activity. It increases the phosphorylation at Ser-253, and is required for the transcriptional inhibition by FCOR. Deacetylation by SIRT1 results in reactivation of the transcriptional activity. Acetylation of FOXO1 diminishes its binding to PPARG in adipocytes. Deacetylated by SIRT2.deacetylation of FOXO1 directly increases its repressive binding to PPARG and inhibits adipocyte differentiation. Oxidative stress by hydrogen peroxide treatment appears to promote deacetylation and uncoupling of insulin-induced phosphorylation. By contrast, resveratrol acts independently of acetylation. Acetylated at Lys-420, promoting its localization to the nucleus and transcription factor activity. Deacetylation at Lys-420 by SIRT6, promotes its translocation into the cytoplasm, preventing its transcription factor activity. Deacetylation and subsequent inhibition by SIRT6 has different effects depending on cell types: it inhibits gluconeogenesis in hepatocytes, promotes glucose sensing in pancreatic beta-cells and regulates lipid catabolism in brown adipocytes.
Function Transcription factor that is the main target of insulin signaling and regulates metabolic homeostasis in response to oxidative stress. Binds to the insulin response element (IRE) with consensus sequence 5'-TTG/ATTTTG-3' and the related Daf-16 family binding element (DBE) with consensus sequence 5'-TTG/ATTTAC-3'. Activity suppressed by insulin. Main regulator of redox balance and osteoblast numbers and controls bone mass. Orchestrates the endocrine function of the skeleton in regulating glucose metabolism. Also acts as a key regulator of chondrogenic commitment of skeletal progenitor cells in response to lipid availability: when lipids levels are low, translocates to the nucleus and promotes expression of SOX9, which induces chondrogenic commitment and suppresses fatty acid oxidation. Acts synergistically with ATF4 to suppress osteocalcin/BGLAP activity, increasing glucose levels and triggering glucose intolerance and insulin insensitivity. Also suppresses the transcriptional activity of RUNX2, an upstream activator of osteocalcin/BGLAP. Acts as an inhibitor of glucose sensing in pancreatic beta cells by acting as a transcription repressor and suppressing expression of PDX1. In hepatocytes, promotes gluconeogenesis by acting together with PPARGC1A and CEBPA to activate the expression of genes such as IGFBP1, G6PC1 and PCK1. Also promotes gluconeogenesis by directly promoting expression of PPARGC1A and G6PC1. Important regulator of cell death acting downstream of CDK1, PKB/AKT1 and STK4/MST1. Promotes neural cell death. Mediates insulin action on adipose tissue. Regulates the expression of adipogenic genes such as PPARG during preadipocyte differentiation and, adipocyte size and adipose tissue-specific gene expression in response to excessive calorie intake. Regulates the transcriptional activity of GADD45A and repair of nitric oxide-damaged DNA in beta-cells. Required for the autophagic cell death induction in response to starvation or oxidative stress in a transcription-independent manner. Mediates the function of MLIP in cardiomyocytes hypertrophy and cardiac remodeling. Regulates endothelial cell (EC) viability and apoptosis in a PPIA/CYPA-dependent manner via transcription of CCL2 and BCL2L11 which are involved in EC chemotaxis and apoptosis.
Protein Name Forkhead Box Protein O1
Forkhead Box Protein O1a
Forkhead In Rhabdomyosarcoma
Database Links Reactome: R-MMU-198693
Reactome: -MMU-211163
Reactome: -MMU-5687128
Reactome: -MMU-9614399
Reactome: -MMU-9617629
Reactome: -MMU-9617828
Cellular Localisation Cytoplasm
Nucleus
Shuttles Between The Cytoplasm And Nucleus
Largely Nuclear In Unstimulated Cells
In Osteoblasts
Colocalizes With Atf4 And Runx2 In The Nucleus
Serum Deprivation Increases Localization To The Nucleus
Leading To Activate Expression Of Sox9 And Subsequent Chondrogenesis
Insulin-Induced Phosphorylation At Ser-253 By Pkb/Akt1 Leads
Via Stimulation Of Thr-24 Phosphorylation
To Binding Of 14-3-3 Proteins And Nuclear Export To The Cytoplasm Where It Is Degraded By The Ubiquitin-Proteasomal Pathway
Phosphorylation At Ser-249 By Cdk1 Disrupts Binding Of 14-3-3 Proteins And Promotes Nuclear Accumulation
Phosphorylation By Nlk Results In Nuclear Export
Translocates To The Nucleus Upon Oxidative Stress-Induced Phosphorylation At Ser-212 By Stk4/Mst1
Sgk1-Mediated Phosphorylation Also Results In Nuclear Translocation
Retained In The Nucleus Under Stress Stimuli Including Oxidative Stress
Nutrient Deprivation Or Nitric Oxide
Methylated Form Is Nuclear
Ppia/Cypa Stimulates Its Nuclear Accumulation
Deacetylation By Sirt6
Promotes Its Translocation Into The Cytoplasm
Alternative CLIA Names Forkhead Box Protein O1 CLIA kit
Forkhead Box Protein O1a CLIA kit
Forkhead In Rhabdomyosarcoma CLIA kit
Foxo1 CLIA kit
Fkhr CLIA kit
Foxo1a CLIA kit
Specificity This kit recognizes Mouse FOXO1 in samples. No significant cross-reactivity or interference between Mouse FOXO1 and analogues was observed.
Reproducibility Both intra-CV and inter-CV are

Information sourced from Uniprot.org


Item Specifications Storage
Micro CLIA Plate (Dismountable) 96T: 8 wells ×12 strips strips -20℃, 6 months
Reference Standard 96T: 2 vials 48T: 1 vial -20℃, 6 months
Concentrated Biotinylated Detection Ab (100×) 96T: 1 vial, 120 μL 60 μL -20℃, 6 months
Concentrated HRP Conjugate (100×) 96T: 1 vial, 120 μL 60 μL -20℃ (Protect from light), 6 months
Reference Standard & Sample Diluent 1 vial, 20 mL 2-8°C, 6 months
Biotinylated Detection Ab Diluent 1 vial, 14 mL 2-8°C, 6 months
HRP Conjugate Diluent 1 vial, 14 mL 2-8°C, 6 months
Concentrated Wash Buffer (25×) 1 vial, 30 mL 2-8°C, 6 months
Substrate Reagent A 1 vial, 5 mL 2-8℃ (Protect from light)
Substrate Reagent B 1 vial, 5 mL 2-8℃ (Protect from light)
Plate Sealer 5 pieces
Manual 1 copy
Certificate of Analysis 1 copy

Sample Type Range (%) Average Recovery (%)
Serum(n=8) 96-112 103
EDTA plasma(n=8) 86-99 92
Cell culture media(n=8) 96-111 103

Intra-assay Precision Intra-assay Precision Intra-assay Precision Inter-assay Precision Inter-assay Precision Inter-assay Precision
Sample 1.00 2.00 3.00 1.00 2.00 3.00
n 20.00 20.00 20.00 20.00 20.00 20.00
Mean (pg/mL) 100.69 227.77 920.13 109.77 245.84 913.01
Standard deviation 8.98 17.49 103.79 11.25 27.61 76.24
CV (%) 8.92 7.68 11.28 10.25 11.23 8.35
12 months for antibodies. 6 months for ELISA Kits. Please see website T&Cs for further guidance