Human HSPA1B/HSP70-2 protein (Recombinant) (N-His) (STJP009347)

SKU:
STJP009347
£328.50 - £1,437.50
Free Shipping
Processing The item has been added

Host: E. coli
Note: STRICTLY FOR FURTHER SCIENTIFIC RESEARCH USE ONLY (RUO). MUST NOT BE USED IN DIAGNOSTIC OR THERAPEUTIC APPLICATIONS.
Short Description : Recombinant-Human HSPA1B/HSP70-2-N-His protein was developed from e. coli and has a target region of N-His. For use in research applications.
Formulation: Lyophilized from a solution in PBS pH 7.4, 0.02% NLS, 1mM EDTA, 4% Trehalose, 1% Mannitol.
Storage Instruction: Use a manual defrost freezer and avoid repeated freeze thaw cycles. Store at 2 to 8°C for frequent use. Store at-20 to-80°C for twelve months from the date of receipt.
Gene Symbol: HSPA1B
Gene ID: 3303/3304
Uniprot ID: HS71B_HUMAN
Immunogen Region: Met1-Asp641
Immunogen: Homo sapiens (Human)
Post Translational Modifications In response to cellular stress, acetylated at Lys-77 by NA110 and then gradually deacetylated by HDAC4 at later stages. Acetylation enhances its chaperone activity and also determines whether it will function as a chaperone for protein refolding or degradation by controlling its binding to co-chaperones HOPX and STUB1. The acetylated form and the non-acetylated form bind to HOPX and STUB1 respectively. Acetylation also protects cells against various types of cellular stress.
Function Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The co-chaperones have been shown to not only regulate different steps of the ATPase cycle, but they also have an individual specificity such that one co-chaperone may promote folding of a substrate while another may promote degradation. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release. The co-chaperones are of three types: J-domain co-chaperones such as HSP40s (stimulate ATPase hydrolysis by HSP70), the nucleotide exchange factors (NEF) such as BAG1/2/3 (facilitate conversion of HSP70 from the ADP-bound to the ATP-bound state thereby promoting substrate release), and the TPR domain chaperones such as HOPX and STUB1. Maintains protein homeostasis during cellular stress through two opposing mechanisms: protein refolding and degradation. Its acetylation/deacetylation state determines whether it functions in protein refolding or protein degradation by controlling the competitive binding of co-chaperones HOPX and STUB1. During the early stress response, the acetylated form binds to HOPX which assists in chaperone-mediated protein refolding, thereafter, it is deacetylated and binds to ubiquitin ligase STUB1 that promotes ubiquitin-mediated protein degradation. Regulates centrosome integrity during mitosis, and is required for the maintenance of a functional mitotic centrosome that supports the assembly of a bipolar mitotic spindle. Enhances STUB1-mediated SMAD3 ubiquitination and degradation and facilitates STUB1-mediated inhibition of TGF-beta signaling. Essential for STUB1-mediated ubiquitination and degradation of FOXP3 in regulatory T-cells (Treg) during inflammation. (Microbial infection) In case of rotavirus A infection, serves as a post-attachment receptor for the virus to facilitate entry into the cell.
Protein Name Heat Shock 70 Kda Protein 1b
Heat Shock 70 Kda Protein 2
Hsp70-2
Hsp70.2
Heat Shock Protein Family A Member 1b
Database Links Reactome: R-HSA-168330
Reactome: R-HSA-3371453
Reactome: R-HSA-3371497
Reactome: R-HSA-3371568
Reactome: R-HSA-3371571
Reactome: R-HSA-450408
Reactome: R-HSA-6798695
Reactome: R-HSA-9833482
Cellular Localisation Cytoplasm
Cytoskeleton
Microtubule Organizing Center
Centrosome
Localized In Cytoplasmic Mrnp Granules Containing Untranslated Mrnas
Alternative Protein Names Heat Shock 70 Kda Protein 1b protein
Heat Shock 70 Kda Protein 2 protein
Hsp70-2 protein
Hsp70.2 protein
Heat Shock Protein Family A Member 1b protein
HSPA1B protein
HSP72 protein

Information sourced from Uniprot.org