

Anti-SRSF8 antibody (1-80 Internal) (STJ95784) STJ95784

GENERAL INFORMATION

 Product Type
 Primary antibodies

 Short
 Rabbit polyclonal antibody anti-Serine/Arginine-Rich Splicing Factor 8 (1-80 Internal) is suitable for use in Western Blot, Immunohistochemistry, Immunofluorescence and ELISA research applications.

 Applications
 WB, IHC-P, IF-P, ELISA

 Reactivity
 Human, Rat, Mouse

PRODUCT PROPERTIES

Clonality Clone ID	Polyclonal			
Concentration	1 mg/mL			
Conjugation	Unconjugated			
Purification	The antibody was affinity-purified from rabbit anti-serum by affinity-chromatography.			
Dilution	WB 1:500-1:2000			
Range	IHC 1:100-1:300			
	ELISA 1:40000			
Formulation	PBS, 50% Glycerol, 0.5% BSA and 0.02% Sodium Azide.			
Isotype	IgG			
Storage Instruction	Store at-20°C for up to 1 year from the date of receipt, and avoid repeat freeze-thaw cycles.			

TARGET INFORMATION

Western SFRS2B the synth

Uniprot ID Immunogen Immunogen Region	SRSF8 SRSF8_HUMAN The antiserum was produc 1-80 Internal	y (Serine/Arginine-Rich Splicing	derived from human SFRS2B at amino Factor 8) binds to endogenous Serine/A	-
HeLa HeLa 	115 85- 18 48- 14 34- 16 26- 19 19- D) D)	SFRS2B nalysis of the lysates from HepG2 cells	HeLa HeLA HELA HELA HELA HELA HELA HELA HELA HELA HELA HELA HELA HELA HELA HELA H	e

This product is suitable for in-vitro studies under the RESEARCH USE ONLY [RUO] licence. This product must not be used as for diagnostic or other medical purposes. St John's Laboratory Ltd, Knowledge Dock Business Centre, University Way, London, E16 2RD | Tel: 0208 223 3081