

Anti-MCL1 antibody (60-140 Internal) (STJ94044) STJ94044

GENERAL INFORMATION

 Product Type
 Primary antibodies

 Short
 Rabbit polyclonal antibody anti-Induced Myeloid Leukemia Cell Differentiation Protein McI-1 (60-140 Internal) is suitable for use in

 Description
 Western Blot, Immunohistochemistry, Immunofluorescence and ELISA research applications.

 Applications
 WB, IHC-P, IE-P, ELISA

 Host/Source
 Rabbit

 Human, Mouse, Rat

PRODUCT PROPERTIES

Clonality Clone ID	Polyclonal
Concentration	1 mg/mL
Conjugation	Unconjugated
Purification	The antibody was affinity-purified from rabbit anti-serum by affinity-chromatography.
Dilution	WB 1:500-1:2000
Range	IHC 1:100-1:300
	ELISA 1:40000
Formulation	PBS, 50% Glycerol, 0.5% BSA and 0.02% Sodium Azide.
Isotype	lgG
Storage Instruction	Store at-20°C for up to 1 year from the date of receipt, and avoid repeat freeze-thaw cycles.

TARGET INFORMATION

Region	MCL1 MCL1_HUMAN The antiserum v 60-140 Internal MCL1 polyclona	vas produced against synthesize al antibody (Induced Myeloid Leu	d peptide derived from human MCL1 at arr kemia Cell Differentiation Protein Mcl-1) bir a amino acid region 60-140 Internal.		
Immunogen Sequence					
- MCL1	117 85 48 34 26 19 (KD) om HUVEC cells, he right is blocked	(kD) 117- 85- 48- 34- 19- Western blot analysis of Jurkat cells usin Polycional Antibody diluted at 1: 1000	g McI-1 Interventional and the second	-embeddid 1 Anibody synthesized (kD) 177 185 48- 48- 48- 48- 49- 19- Western biot analysis of various cells using Mel-1 Polyclonal Antibody diluted at 1: 1000	1

This product is suitable for in-vitro studies under the RESEARCH USE ONLY [RUO] licence. This product must not be used as for diagnostic or other medical purposes. St John's Laboratory Ltd, Knowledge Dock Business Centre, University Way, London, E16 2RD | Tel: 0208 223 3081